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In the Amazon rainforest, land use following deforestation is
diverse and dynamic. Mounting evidence indicates that the cli-
matic impacts of forest loss can also vary considerably, depending
on specific features of the affected areas. The size of the
deforested patches, for instance, was shown to modulate the
characteristics of local climatic impacts. Nonetheless, the influence
of different types of land use and management strategies on the
magnitude of local climatic changes remains uncertain. Here, we
evaluated the impacts of large-scale commodity farming and rural
settlements on surface temperature, rainfall patterns, and energy
fluxes. Our results reveal that changes in land–atmosphere cou-
pling are induced not only by deforestation size but also, by land
use type and management patterns inside the deforested areas.
We provide evidence that, in comparison with rural settlements,
deforestation caused by large-scale commodity agriculture is more
likely to reduce convective rainfall and increase land surface tem-
perature. We demonstrate that these differences are mainly
caused by a more intensive management of the land, resulting
in significantly lower vegetation cover throughout the year, which
reduces latent heat flux. Our findings indicate an urgent need for
alternative agricultural practices, as well as forest restoration, for
maintaining ecosystem processes and mitigating change in the lo-
cal climates across the Amazon basin.
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During the past 50 y, ∼20% of the Amazon forest has been
lost to deforestation (1, 2). These changes in the land sur-

face have affected the functioning of ecosystems and the climate
in ways we are only starting to understand. Deforestation size,
for instance, is a potential factor defining the magnitude and
characteristics of changes in local climate associated with forest
loss (3, 4). There is also evidence that the different land uses that
follow deforestation can regulate the magnitude of changes in
surface energy balance and water cycle (5). Historically, there has
been large variation in the characteristics and causes of defores-
tation (1, 6–9). In the area known as the “arc of deforestation,”
two major processes have contributed to forest loss: government-
supported rural settlements and expansion of market-focused
large-scale agriculture (hereinafter referred to as “commodity
agriculture”) (10, 11). Deforestation caused by these two types of
farming systems has distinct characteristics, and each can have
several variants.
Rural settlements are generally associated with government

colonization projects, migratory flow incentives, and the con-
struction of new roads (7). In areas dominated by rural settle-
ments, small properties with plots ranging from 25 to 100 ha are
predominant (8, 9, 12). However, medium-sized properties rang-
ing from 250 to 1,000 ha and farms larger than 1,000 ha may also
occur. Activities inside these areas are characterized by livestock
production (extensive pastures), small-scale crop production, and
family farming (13). The establishment of small farms along main

highways and secondary roads results in the well-known “fish
bone” deforestation pattern.
Forest areas taken by large-scale commodity agriculture rep-

resent a more recent stage of occupation, usually associated with
spontaneous and economical migration but also, with changes in
land use policies and market conditions (14). Agricultural ac-
tivities aimed at commodity crop plantation are in general pro-
ductive and often technologically advanced. The most common
commodity crops in the Amazon region are soybean, maize,
sorghum, and cotton. Nonetheless, forests are typically not
converted directly into croplands, with pastures often used as a
transitory land use. Permanent mid- to large-scale cattle ranch-
ing also occurs, although many of these areas are being rapidly
converted into croplands (6, 14–16). Farm sizes can reach several
thousand hectares. Properties are, therefore, bigger and more
isolated, in comparison with rural settlements (13).
Given the different characteristics of commodity agriculture

and rural settlements, the spatiotemporal patterns of land cover
biophysical properties can also differ considerably. In general,
commodity crops cultivation involves an intensive use of the
land, sometimes with two or more harvests per year (17). Hence,
rapid changes in the vegetation cover, albedo, and evapotrans-
piration (ET) can occur (5, 18). On the other hand, in areas where
small-scale pastures and agriculture are prevalent, the biophysical
properties of the land surface are expected to vary less, given the
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less intensive use of the land (e.g., associated with family farming
and agroforestry). Furthermore, modeling studies suggest that the
type of vegetation involved in land cover conversions is important
in determining the sign of the land change impacts (19). However,
empirical studies are crucially needed to better understand how
different land uses across the Amazon region affect the local and
regional climate.
Tropical deforestation has deep impacts on biophysical pro-

cesses (1, 20–22), contributing to amplifying diurnal temperature
variability (1.95 ± 0.08 °C) as well as increasing mean air tem-
perature (∼1 °C) (23). The causes of increase in temperature are
dominated by nonradiative mechanisms, in particular a decrease
in latent heat flux (LE) (24). The cooling effects of albedo in-
crease due to deforestation are in most cases outweighed by the
warming effects of decreasing ET, leading to net warming (23–25).
The impacts of Amazon deforestation on rainfall patterns are

not yet fully understood (4). In the initial phases of deforesta-
tion, vegetation loss was shown to increase regional cloudiness
and precipitation (3). In comparison with deforested areas, the
greater humidity over forests leads to more convective available
potential energy, which makes the atmospheric boundary layer
more unstable (26). Conversely, small deforestation patches
showed more active shallow convection, explaining the higher
frequency of shallow clouds over deforested areas (26). How-
ever, it is unclear how these mechanisms change as deforested
areas increase and land cover becomes more uniform. One hy-
pothesis is that convective lifting mechanisms will lose force, and
shallow clouds over deforested areas will no longer be favored.
Modeling studies indicate that this shift is already happening in
some parts of the Amazon, where deforestation has reached a
point in which thermally dominated regime has declined, leading
to a more dynamically driven hydroclimatic regime (27). A dy-
namically driven regime becomes dominant when differences in
surface roughness between forest and forest clearings start to
play a larger role in the atmospheric response, in comparison
with the differences in the surface energy partitioning (28).
As observational and modeling studies indicate that land use

and management can play an important role in the climate sys-
tem, overlooking these landscape heterogeneities can hinder an
adequate response to the threats posed by human activities (29).
Clarifying the climatic impacts of different land uses in the
Amazon is crucial to foster informed plans for sustainable land
management, in particular those aiming at strategies for climate
change mitigation, maintenance of ecological functioning, and
guarantying provision of essential ecosystem services. Here, we
hypothesize that forest conversion to large-scale commodity agri-
culture is more detrimental to local climate than conversion to rural
settlements. To test this hypothesis, we first evaluated whether or
not land uses associated with commodity agriculture and rural
settlements lead to quantitatively distinguishable land cover spa-
tiotemporal patterns in regions with similar deforestation rates
(1985 to 2018) and total deforested area in 2018. Next, we collected
empirical evidence on how forest clearing associated with these two
causes has affected local rainfall, surface temperature, and LE.

Results
Landscape Patterns across Rural Settlements and Commodity
Agriculture Areas. Our analysis focused on four areas (∼110 ×
110 km each) in the Amazon basin (Fig. 1). The criteria and
procedures used to select the study areas are described in Study
Areas. Two areas were located in the arc of deforestation (marked
as cells A and C in Fig. 1). Cell A was located in the state of
Rondônia, over an area dominated by a fish bone deforestation
pattern formed by small farms distributed along main highways
and secondary roads. Cell C was located in the north of Mato
Grosso State, over an area where large-scale commodity farms are
prevalent. The mean size of consolidated area per property in cell
A was 52 ha, while in cell C, the mean size of consolidated area

per property was 374 ha (SI Appendix, Fig. S2). In addition, two
areas with similar size but not affected by deforestation were used
as reference sites (marked as cells B and D in Fig. 1).
In both areas affected by land changes (cells A and C),

deforested area in the beginning of the 1980s accounted for less
than 10% of the total area (Fig. 1A). A step increase in forest
loss occurred between 1990 and 2005, after which the total area
deforested stabilized at ∼40%. Despite similar amounts of total
area deforested, the spatial patterns of the two regions could be
distinguished visually and quantitatively (Fig. 1). Until the late
1990s, landscape in both regions displayed similar core area
(i.e., the total area of patches that have only neighboring patches
from the same class). After the year 2000, the core area of forests
in the area dominated by fish bone deforestation (“rural settle-
ments”) increased at a higher rate in comparison with areas al-
located for commodity agriculture. The shape complexity,
expressed by the shape index (i.e., the ratio between the pe-
rimeter of the patch and the hypothetical minimum perimeter of
the patch), was consistently higher (∼10%) in the commodity
agriculture areas in comparison with the rural settlements.
Land use in rural settlement areas (cell A) was largely domi-

nated by pastures throughout the entire study period, with only
small areas designated to croplands (<1%) (Fig. 1 and SI Ap-
pendix, Fig. S3). Other activities such as family farming and ag-
roforestry, although present, are likely masked due to the small
scale of these activities. Given that these land use types are not
specifically accounted for in the dataset used for this analysis,
they are often misclassified as pastures. In the commodity agri-
culture area (cell C), a shift in land use patterns took place after
the year 2000, with a steady increase in areas designated to
croplands, reaching ∼25% of the entire area in 2018. The increase
in croplands was accompanied by a decrease in areas destined to
pastures, which decrease from 22% in 2005 to 13% in 2018 (Fig. 1
and SI Appendix, Fig. S3).
We further demonstrate that land cover temporal patterns

differ between the two sites. Vegetation cover over deforested
areas was assessed using satellite-derived enhanced vegetation
index (EVI). Areas of commodity agriculture had consistently and
significantly (unpaired Welsch t test, P < 0.01) lower vegetation
cover between May (day of year [DOY] = 120) and November
(DOY = 305) (Fig. 2A). Between December and February, both
areas had similar EVI values, indicating a comparable vegetation
cover during this period. We also analyzed differences in the
vegetation cover of dominant land use types in our study areas. In
September, when vegetation cover was shown to be the lowest,
croplands had ∼20% lower EVI than pastures inside the same
region (i.e., cell C, mid- to large-scale cattle ranching) and 30%
lower than pastures located in the rural settlement area (cell A).

Changes in Rainfall Patterns. Changes in the seasonal patterns of
rainfall were evaluated based on the average of two periods:
from 1998 to 2005 and from 2005 to 2014 (Fig. 3), thus com-
prising the entire time series of the TRMM (Tropical Rainfall
Measuring Mission) precipitation radar (PR). These time inter-
vals allowed the assessment of rainfall patterns from a period
when the deforestation process was only beginning to a period
when forest loss was relatively stable. The average forest cover
percentage in cells A and C was at 83% from 1998 to 2005, and it
declined to 57% from 2005 to 2014.
We observed decreasing rainfall rates in the commodity agri-

culture site (Figs. 3 and 4). The reduction occurred mostly during
months with average monthly rainfall above 200 mm mo−1 (i.e.,
the period between October and March, hereinafter referred to
as “wet season”), being particularly evident in February, March,
October, and November. The decrease was shown to be mainly
caused by a reduction in convective rainfall, while changes in
stratiform rain were less evident (Fig. 3). When considering the
annual mean, we observed significant differences in the mean
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total and convective rain (P = 0.016 and P = 0.009, respectively,
based on a Welsch t test), while differences in the mean annual
stratiform rain were not significant (P = 0.279). A Mann–Kendall
(M-K) trend test indicated a strong and consistent decreasing
trend in convective rainfall (P = 0.006) during the wet season
between 1998 and 2014, while the stratiform rainfall trend during
the same period had a lower magnitude (P = 0.012) (Fig. 4). There
were no significant trends in rainfall during the dry season (April
to September) in the commodity agriculture site (Fig. 4).

In the rural settlements site, there were no clear changes in the
seasonal patterns of rainfall between the two periods (Fig. 3).
Annual mean values were also not statistically different (based
on a paired Welsch t test). This result was confirmed by the M-K
test, which did not indicate significant trends in convective or
stratiform rainfall, independent of the season (Fig. 4).
To discard the influence of large-scale climatic signals in these

results, we conducted the same analysis in two reference areas
(i.e., cell B located between cells A and C in the northwest part

Fig. 1. Geographical locations of the study areas, each consisting of 1° × 1° cells, where cell A is dominated by rural settlements and cell C is dominated by
large-scale commodity agriculture. Cells B and D were used as reference, as there has been no substantial forest loss in these areas during the study period. (A)
Total forest loss, (B) mean core area of deforested areas, and (C) the mean shape index of deforested areas.

BA

Fig. 2. (A) Seasonal variability in vegetation cover inside deforested areas (solid lines) and in adjacent forests (dashed lines) measured using the EVI. The
adjacent forests represent intact forests located inside the same 1° × 1° cell. Average values were calculated using data from 2001 to 2018. Shaded areas
represent means ± SD. (B) August average EVI values for dominant land use classes inside each cell.
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of Mato Grosso State and cell D located inside the Xingu Na-
tional Park—both areas showed no forest loss during the same
period of time) (Fig. 1 and SI Appendix, Figs. S1, S4, and S5).
The results confirmed that significant trends were not observed
in the regions unaffected by deforestation.

Changes in Land Surface Temperature and LE. Changes in land
surface temperature (LST), LE, and ET caused by forest loss
were assessed using a space-for-time (SFT) substitution ap-
proach (30, 31). The basic assumption in the SFT substitution is
that spatial and temporal variations are equivalent (30). Hence,
observations over deforested areas were compared with those
obtained over adjacent forests. We observed that both sites
showed significant differences in LST between forested and
deforested areas (P < 0.01) (Fig. 5). These changes were present
during all seasons of the year, although differences in the dry
season had higher magnitude. Forest loss associated with rural
settlements caused an average LST increase of 1.05 °C during the
wet seasons and 1.25 °C during the dry seasons (Fig. 5A). The
maximum average warming in rural settlement areas was ob-
served in August (1.85 °C). In areas of commodity agriculture,
warmings of 1.57 °C and 2.11 °C were observed in the wet and
dry seasons, respectively. The maximum difference was also
observed in August (3.06 °C). When untangling these results by
land use type, we observed that, in August, croplands were on
average ∼1 °C warmer than pastures (Fig. 5). Both pastures in
cell A and cell C showed similar mean temperatures for the same
period (33.8 °C and 33.2 °C, respectively).
Changes in LE caused by forest loss were evident in both sites

(Fig. 6). The magnitude and seasonal patterns of the changes
were, however, more pronounced in deforested areas caused by
commodity agriculture. In rural settlement areas, the decline of

LE (in relation to adjacent forests) was observed from June
(DOY ∼ 150) to the end of October (DOY ∼ 300). In com-
modity agriculture areas, the decline occurred from May (DOY
∼ 125) to mid-November (DOY ∼ 325; i.e., ∼50 d longer than
the rural settlements area). In both areas, the strongest reduction
in LE was observed around August to September. During this
period, the LE decline in commodity agriculture areas was ap-
proximately two times larger than in fish bone areas (Fig. 6).
During August, croplands had 39% lower LE than pastures lo-
cated in the same region (cell C) and 60% lower LE than pas-
tures located in rural settlement areas (cell A).
Changes in ET followed the same pattern (SI Appendix, Fig.

S7A). In commodity agriculture areas, the lowest ET values were
around 1.2 mm d−1 (compared with 3 to 4 mm d−1 in adjacent
forests), while the minimum ET in fish bone areas reached
∼2.4 mm d−1. The contribution of transpiration to total ET
[T/(E + T)] was consistently lower in commodity agriculture
areas, in comparison with rural settlements (SI Appendix, Figs.
S7 B–D), confirming the key role of vegetation cover on the
stronger reduction of LE and ET in commodity agriculture areas.
During August to September, when the strongest reduction in
LE was observed, T/(E+ T) was ∼60% in commodity agriculture
areas and 75% in rural settlements (SI Appendix, Fig. S7B).
Contrasting differences were also observed in the rainy season,

particularly from January to May (Fig. 6 and SI Appendix, Fig.
S7). During this period, rural settlement areas showed similar or
higher LE and ET in comparison with adjacent forest areas. On
the other hand, in commodity agriculture areas, LE and ET
values were lower than in the original land cover, in particular
between February and April (i.e., same period when a reduction
in convective rainfall was observed). This result is again
explained by a lower contribution of T to total ET, which was as

Fig. 3. Mean seasonal patterns of rainfall between 1998 and 2005 (blue lines; average forest cover = 83%) and between 2005 and 2014 (red lines; average
forest cover = 57%).
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low as 75% between January and May in commodity agriculture
areas (in comparison with 80% in rural settlements) (SI Ap-
pendix, Fig. S7B).

Discussion
Our results demonstrate that taking into account the complex
combination of matrix shape, land use, and land management is

key to understanding the climate impacts caused by deforesta-
tion in the Amazon forest. We provided evidence that regions
with similar history of total forest loss can have quantitatively
distinguishable spatial patterns depending on the original causes
of deforestation, leading to different climate impacts.
We report a significant decline in wet season rainfall volumes

in areas dominated by large-scale commodity agriculture. The
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Fig. 4. Rainfall time series trends from 1998 to 2014. The wet period (blue) is represented by average rainfall values from October to March, while the dry
period (red) is represented by the period between April and September. We define wet period as the period when average monthly rainfall in our study areas
was above 200 mm mo−1.
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same decline was not observed in an area where deforestation
was mainly caused by rural settlements. Although the observed
association between these two deforestation types and rainfall
changes cannot prove a causal link, evidence from the causality
can be deduced from the underlying physics driving the rainfall
formation process. Previously published research collected evi-
dence that changes in land surface properties can influence en-
ergy and moisture fluxes within the planetary boundary layer, as
well as convective available potential energy, strongly affecting
the development of cumulus convective rainfall (32). Modeling
studies demonstrated that, as deforested areas increase and land
cover becomes more uniform, convective lifting mechanisms lose
force and local surface roughness starts to play a larger role in
the regional climate dynamics (27). The decreasing rainfall in
commodity agriculture areas could then be explained by the
stronger reduction in LE in comparison with rural settlements,
which leads to increasing aridity and weakening of convective
lifting (33). This argument is confirmed by a stronger vapor
pressure deficit (VPD) increase in the region dominated by
commodity agriculture, in comparison with the rural settlement
area (SI Appendix, Fig. S8). Within the commodity agriculture
area, VPD in croplands was on average 5% higher than in pas-
tures (and 10% higher than in pastures located in the rural
settlement region).
Although the decrease in ET had a higher magnitude during

the dry season, the effects of reduced ET on convective rainfall
seemed more evident at the end of the rainy season (February to
April). These findings are in line with previous studies indicating
that ET reduction and surface warming lead to the drying of the
atmospheric boundary layer, hindering cloud formation and

reducing rainfall (34). Studies have also demonstrated a large
influence of forest loss on the ET patterns in the southern
Amazon, reinforcing the role of forests in recycling precipitation
by returning soil moisture back into the atmosphere (35).
The lower LE in commodity agriculture areas is likely explained

by land management and crop phenology. Given the long growing
season in the southern Amazon, crop production cycles are more
complex than traditional cropping cycles found in temperate re-
gions. In Mato Grosso State, for instance, the agricultural calendar
can consist of multiple harvesting and seeding seasons (36). Soy-
bean and maize seeding usually takes place between September
and November, and harvesting is between January and May. This
can be followed by another crop growing season (referred as
“safrinha” in Portuguese), which occurs between February and
September, usually consisting of maize or cotton.
The harvesting and seeding cycles typical for commodity crops

lead to abrupt changes in the land surface properties, given the
reduction of vegetation cover and exposure of bare land (18, 37,
38). This pattern is confirmed by the analysis of the EVI patterns
over our sites. EVI is strongly related to photosynthetically active
vegetation biomass (39, 40) and was shown to be efficient in
monitoring agricultural production cycles (17), being a good indi-
cator for crop mapping in southern Amazon (36). All these com-
bined contribute to lower plant transpiration, reduced soil
moisture, and changes in the surface energy balance. Such abrupt
changes in the land surface are less likely to occur in rural settle-
ment areas, given the different land use dynamics in these regions.
Rural settlements are mostly characterized by pastures. Family
farming and agroforestry also occur at smaller scales, which result

BA

Fig. 5. Mean seasonal patterns of LST in (A) rural settlements and (B) commodity agriculture areas, with B, Inset showing results for dominant land use classes
within the region. Average values were calculated using data from 2001 to 2018. Shaded areas represent means ± SD.

A B

Fig. 6. Mean seasonal patterns of LE in (A) rural settlements and (B) commodity agriculture areas, with B, Inset showing results for dominant land use classes
within the region. Average values were calculated using data from 2001 to 2018. Shaded areas represent means ± SD.
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in a more stable vegetation cover of the land surface, as the soil is
not tilled or exposed during harvest.
When deforestation occurs, several factors contribute to

changing the energy balance, which may lead either to the cooling
or to the warming of the land surface. The resulting effects are
mainly driven by two competing biophysical factors, ET and al-
bedo (41). Forests typically absorb more shortwave radiation than
sparser and lower vegetation (42, 43); consequently, the increase
in surface albedo caused by forest loss often contributes to surface
cooling. However, in tropical regions, nonradiative mechanisms
(i.e., ET, surface roughness) are by far the dominant processes in
energy budget changes caused by deforestation, leading to net
warming (19, 24, 25, 41). Our results further refine these findings,
demonstrating that land use and management patterns following
deforestation are also critical for defining spatiotemporal patterns
of surface energy balance. Overall, this is in line with previous
studies indicating that forest to crop transitions have a more
detrimental effect on ET, LE, and net surface radiation, when
compared with forest to pasture transitions (5, 19).
However, the impacts of large-scale oscillations on the local

climate trends observed in our study cannot be discarded, par-
ticularly the influence of atmospheric circulation patterns on the
rainfall changes. Likewise, disentangling the effects of climate
variability and land cover change on regional rainfall is challeng-
ing, as climate effects can mask deforestation-induced changes to
the water budget (44). To improve our understanding of the on-
going climate changes in our study areas, we analyzed a time series
of mean vertically integrated moisture divergence, which repre-
sents the horizontal rate of moisture flow (SI Appendix, Fig. S9).
This parameter is positive for moisture that is spreading out and
negative for the opposite, for moisture that is concentrating.
Therefore, it indicates whether atmospheric motions act to de-
crease (for divergence) or increase (for convergence) the vertical
integral of moisture, over the time period. Interestingly, our re-
sults indicate a decreasing trend of moisture divergence (increas-
ing convergence) during the wet season, over all our study sites (SI
Appendix, Fig. S9). These results are in line with previous research
indicating that the Amazon basin has become substantially wetter
since the 1990s, mainly due to increasing atmospheric water vapor
import from the warming tropical Atlantic (45). This trend coin-
cides with the onset of an increasing trend in tropical Atlantic sea
surface temperatures (45). Thus, given the increasing moisture
convergence in all study areas, our results provide evidence that
the decreasing precipitation trend observed in commodity agri-
culture areas can be caused by local changes in land surface
biophysical attributes.
The spatial (fish bone) patterns of deforestation caused by

rural settlements have been known for decades. The higher shape
index and core area of rural settlements demonstrate a greater
overall landscape complexity in areas of rural settlement (46). The
higher core area in rural settlements is initially counterintuitive,
given that the region is characterized by smaller rural properties.
The core area is defined as all cells that have no neighbor with a
different class than themselves. Hence, our result in the rural
settlement area is explained by a stronger connectivity between
patches, which results in larger core areas, even though these areas
may comprise several different rural properties.
Previous studies have gathered compelling evidence that the

size of deforested areas is also important in defining the char-
acteristics of local climatic changes. Small-scale forest loss was
shown to increase regional cloudiness and precipitation fre-
quency, due to enhanced mass and energy transfers between the
land and the atmosphere (3, 26). On the other hand, this ther-
mally triggered atmospheric circulation tends to get weaker as
deforested area size increases, reducing rainfall rates (4, 27). Our
results demonstrate that changes in land–atmosphere coupling
not only are defined by the size of deforested areas but also, are

strongly dependent on land use and management patterns inside
those areas.
These findings reinforce the argument that the impacts of

modification and management of the land merit the same level
of research and policy attention given to other anthropogenic
contributions to climate change (47). We suggest that practices
aiming to maximize vegetation cover should be further explored
to mitigate changes in climate. These include, for instance, ag-
roforestry or perennial crops cultivation (48). Agroforestry is a
particularly attractive option, as it seeks to manage forest ser-
vices and agriculture at the same time, improving soil fertility
and increasing water availability while preserving vegetation
cover and microclimate. Agroforestry systems are currently a
very small element of the agricultural landscape in the Amazon,
often at experimental scales or as a result of internationally
funded initiatives (49).
Integrated crop–livestock systems are seen as a potential

pathway to increase low productivity and sustainability of cattle
production in the Amazon. The integrated soybean–cattle sys-
tems can have higher productivity than continuously grazed areas
and hence, increased resilience under changing climate (50). In
suitable areas, integrated crop–livestock systems can also be very
profitable (51). However, both intercropping and rotation sys-
tems decrease vegetation cover in comparison with cattle grazing
systems. Therefore, systems that also include trees (integrated
crop−livestock−forestry systems) are recommended, considering
our results.
On the other hand, traditional commodity agriculture in the

southern Amazon is very productive, profitable, and technolog-
ically advanced. It is therefore farfetched to assume that alter-
native methods will replace the current system in the short term
and at large scales. However, with increasing international
awareness and consumers’ preference for more sustainable prod-
ucts, alternative production methods will start to become more
attractive. Actions led by the food industry and civil society or-
ganizations have been proven useful to guide in the direction of
more sustainable practices. For instance, Brazil’s soy moratorium,
signed in 2006 by major soybean traders, limited the commer-
cialization of soy grown on lands deforested after July 2006 in the
Brazilian Amazon, having a positive impact on the reduction of
deforestation rates while not affecting agricultural production (52,
53). Furthermore, there is increasing evidence that public policies,
in combination with international trade treaties and protocols,
have positive effects on sustainable land use and thus, the climate
system (29).
Finally, restoration of legal forest reserves is another impor-

tant pathway to mitigate changes in the regional climate. The
recently created Rural Environmental Registry of private prop-
erties (CAR) will provide an unprecedented tool to monitor the
compliance with the Brazilian forest code by linking a respon-
sible landholder to land use on a particular farm (52, 53). This
will thus allow the identification of suitable areas for forest
restoration, as well as the creation of more sustainable supply
chains.

Materials and Methods
Study Areas. We selected four areas of ∼110 × 110 km each (1° × 1°) (Fig. 1).
As our aim was to compare areas dominated by commodity agriculture and
rural settlements, we carried out a search for regions having similar total
deforested area throughout the study period but distinct land use and
spatial patterns. To select the suitable regions, the study areas had to meet
the following criteria: have similar total deforested area; have similar tem-
poral rates of deforestation within the analyzed time window; be big
enough to provide a representative sampling and contain enough pixels
from the remotely sensed data that were being evaluated (e.g., TRMM data
at 0.25°); be small enough to avoid confounding factors such as climate
variability due to latitudinal differences or regional variability; have very
distinct land use pattern (i.e., one needed to be dominated by rural settle-
ments, and the other needed to be dominated by large-scale commodity
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agriculture); and be far enough apart to avoid spatial autocorrelation of
rainfall data.

To identify the regions meeting all the above criteria, we first divided the
entire Amazon basin into a 1° × 1° grid. This cell size (i.e., ∼110 × 110 km) was
considered consistent with the spatial resolution of all remote sensing datasets
used in the study. The total deforested area inside each cell was calculated
using land cover maps from MapBiomas project (https://mapbiomas.org/en)
(Land Use and Land Cover Data has details). After identifying cells with similar
total deforestation trajectories, we selected regions with distinct land use
patterns based on 1) visual interpretation of spatial deforestation patterns, 2)
size of rural properties according to Brazil’s National Environmental Registry
of Rural Properties, and 3) predominance of commodity crops, as identified
by land use maps from MapBiomas project. The National Environmental
Registry of Rural Properties is a mandatory and self-declaratory electronic
registry for rural properties, in which owners must provide georeferenced data
on the boundaries of the properties, as well as other information such as legal
reserve areas and areas deforested.

We were also careful to select cells that were far enough apart to avoid
spatial autocorrelation in the analysis of rainfall data. Rainfall patterns are
defined not only by local land surface properties but also, by boundary
conditions (e.g., synoptic conditions, atmospheric circulation). A study using
more than 800 meteorological stations showed that the correlation coeffi-
cients of rainfall occurrence measured by stations distanced by less than
100 kmwere mostly above 0.8, decreasing to 0.4 or less for stations distanced
by more than 500 km (54). The selected commodity agriculture and rural
settlement regions are ∼550 km apart, thus avoiding major issues with
spatial autocorrelation.

Land Use and Land Cover Data. Land use and land cover data were obtained
from the MapBiomas project.* We used Collection 4, released in August
2019, which covers the period from 1985 to 2018. This product offers land
use and land cover maps at a 30-m spatial resolution. The maps are produced
annually based on the classification of Landsat imagery mosaics. The mosaics
are formed by a composition of the best-quality pixels in each set of images
for a certain time period. The mosaics are then used to produce a map with
land cover classes (forest, agriculture, pasture, urban area, water, etc.) using
the random forest algorithm. All data are public and free for noncommercial
use or general interest purposes. In this study, we reclassified the maps into
four classes: forest, pasture, cropland, and mixed use. These four classes
accounted for more than 99% of the total area in our study sites, during the
entire study period. The forest class aggregated all the natural vegetation
areas that did not suffer any conversion during the study period.

Landscape Metrics. To describe landscape patterns in the study areas affected
by deforestation (marked as cells A and C in Fig. 1), we calculated landscape
metrics for forest and nonforest land cover classes using FRAGSTATS 4.2 (46).
Due to redundancy of the information provided by the various landscape
metrics, we used the Pearson correlation test to discard highly correlated
metrics (r ≥ 0.80). From the remaining eight metrics, we selected two that
were less correlated with total forest loss (i.e., were more sensitive to
landscape patterns/complexity and less sensitive to the class total area):
mean shape index and mean core area (55). The shape index is the ratio
between the perimeter of the patch and the hypothetical minimum pe-
rimeter of the patch. It equals zero if all patches have an identical shape
index and increases, without limit, as the shapes of patches become more
complex. The core area is defined by the cells that have only neighboring
cells from the same class, and the mean core area equals the mean of core
areas of all patches belonging to a certain class (46).

EVI. Vegetation cover over deforested areas was assessed using satellite-
derived EVI, which is calculated based on the reflectance (ρ) of red, blue,
and near infrared (NIR) (40) following Eq. 1:

EVI = G  ×  
(ρNIR − ρRed)

(ρNIR + C1  × ρRed − C2 × ρBlue + L)
, [1]

where ρNIR is the NIR reflectance factor, ρRed is the red reflectance factor, and

ρBlue is the blue reflectance factor; the coefficients adopted were L = 1, C1 =
6, C2 = 7.5, and G = 2.5.

The imagery was obtained from the Moderate Resolution Imaging
Spectroradiometer (MODIS) Multi-Angle Implementation of Atmospheric
Correction (MAIAC) product (MCD19A1) (56) at 1-km spatial resolution,
which was downloaded from NASA’s Level 1 and Atmosphere Archive and
Distribution System (LAADS). We used MODIS Collection 6 Level 1B (cali-
brated and geometrically corrected) observations, which removed major
sensor calibration degradation effects present in earlier collections. Obser-
vations collected between 2001 and 2018 were used in this study. MAIAC
uses an adaptive time series analysis and processing of groups of pixels for
advanced cloud detection, aerosol retrieval, and atmospheric correction. The
data are corrected for sun–sensor–target geometry effects inherent in the
image acquisition process. All the images are normalized to an apparent
nadir view zenith angle (0°) and 45° of solar zenith angle using a bidirec-
tional reflectance distribution function and Ross–Thick Li–Sparse model (56).

Rainfall Data. Rainfall data were obtained from the TRMM satellite, which
was launched in November 1997 (57) and shut down in 2015. The product
used was the 3A25, which consists of monthly statistics of the PR measure-
ments (58). We used the 0.5° × 0.5° resolution grid, with monthly mean
values of surface rainfall rate, which are classified between stratiform and
convective types. The rain-type classification in TRMM PR products is done
using two methods: the vertical profile method (59) and the horizontal
pattern method (60). The vertical profile method is largely based on the
detection of the bright band (BB), which indicates a melting layer, where the
solid particles melt and change into rain drops. In the case of stratiform rain,
the BB appears as a strong signal of radar echo when the radar frequency is
between 15 and 20 GHz (59). This dataset and other TRMM data can be
obtained through NASA’s EARTHDATA search portal (https://search.
earthdata.nasa.gov/search).

LST. LST data were obtained from the MODIS. The product used was the
MOD11C2 Version 6, which provides LST imagery in a 0.05° × 0.05° latitude/
longitude grid. The LST values in the MOD11C2 imagery are provided as
composites, with pixel values representing the average of clear-sky LST
during an 8-d period (61). All 8-d composites from 2001 to 2018 were used in
this study.

The LST represents the radiometric temperature related to the thermal
infrared radiation emitted from the land surface observed by an instanta-
neous MODIS observation. In this study, we used the daytime LST, corre-
sponding to measurements obtained around 10:30 AM (local solar time). The
MODIS LST products have been validated over a broad range of represen-
tative conditions and extensively tested using comparisons with in situ values
and radiance-based validation. The product uncertainties are well defined,
with LST errors estimated to be lower than 1 K in most cases (62).

In land areas, MODIS LST is only calculated for pixels at clear-sky conditions
at 95% confidence for regions below 2,000 m above sea level and 66%
confidence for regions above 2,000 m above sea level (61). In our study,
quality control was undertaken using the quality assurance (QA) layers
provided with the MOD11C2 product. The QA layer was used to exclude
pixels in which LST was not produced due to atmospheric interference or not
processed due to poor quality. Pixels with average LST error higher than 1 K
were also excluded.

LST is known to be strongly affected by land cover characteristics (63–65).
Given the different spatial resolutions between the LST data and the land
cover maps, we carried out an additional analysis using high-resolution LST
to exclude the influence of pixel mixture on our results. For that, we used a
Landsat 8-based LST product with 30-m spatial resolution (66) (SI Appendix,
Fig. S6). This product was shown to have an overall root-mean-squared error
(RMSE) of 1.52 °C, based on a comparison against two independently pro-
duced reference datasets. All cloud-free scenes obtained in dry seasons from
2013 to 2018 were considered, resulting in the five suitable images. The
results obtained using the 30-m Landsat 8 LST product concurred with the
conclusions based on the MODIS data, showing that areas occupied by
commodity agriculture present significantly higher LST in comparison with
areas occupied by rural settlements (SI Appendix, Fig. S6).

VPD. VPD was assessed using a remote sensing approach proposed by
Hashimoto et al. (67). This method uses linear models to predict VPD using
saturated vapor pressure calculated from MODIS LST. The saturation vapor
pressure was calculated as follows (67):

*MapBiomas Project–Collection 4 of the Annual Land Use Land Cover Maps of Brazil was
accessed through the link https://mapbiomas.org. MapBiomas Project is a multiinstitu-
tional initiative to generate annual land use land cover maps based on automatic clas-
sification processes applied to satellite images. The complete project description can be
found at https://mapbiomas.org.
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e*(T ) = 0.6107e(17.38T )=(239+T), [2]

where e*(T) is given in kilopascals and T is the LST estimated by the MODIS
sensor at around 10:30 AM. VPD was then calculated using the following
linear model (67):

VPD = 0.353e*(T) + 0.154. [3]

Hashimoto et al. (67) tested this model in Porto Velho in the Brazilian Am-
azon, reporting an RMSE of 0.35 and a mean absolute error of 0.27.

LE, Evaporation, and Transpiration. LE and ET 8-d composite data, produced at
500-m spatial resolution, were obtained from the MODIS MOD16A2 product
(68). LE is an important component of Earth’s surface energy budget. It
describes flux of energy from the land surface to the atmosphere that is
associated with evaporation and transpiration of water (i.e., ET). The MOD16
LE and ET are estimated by a modified Penman–Monteith ET method, which
uses ground-based meteorological observations and remote sensing data from
MODIS (e.g., leaf area index [LAI], albedo, and land cover). Compared with
eddy flux measurement, MODIS ET was shown to have a mean absolute error
of ∼0.3mmd–1 (68). All 8-d composites from 2001 to 2018 were used in
this study.

ET partition between physical evaporation (E) and transpiration was
assessed using the method proposed by Wei et al. (69). This approach pre-
sents an ET partitioning algorithm based on the relationships between LAI
and T/(E + T) for different vegetation types. The partition was done as
follows:

T
E + T

= 0.66 × LAI0.18   (croplands), [4]

T
E + T

= 0.69 × LAI0.28   (pastures), [5]

where LAI is obtained fromMOD15A2H Collection 6, MODIS LAI product. This
is an 8-d composite dataset at 500-m resolution.

Statistical Analysis of Changes in the Climate Variables. Temporal changes in
rainfall patterns were analyzed using two approaches. First, we analyzed
rainfall seasonal patterns in two periods: 1985 to 2005 represents a period
marked by an intensification of forest loss in our study areas, while the
percentage forest loss in both areas was still below 40%; in the second period
between 2005 and 2014, forest loss continued at a lower rate, with the
percentage forest loss being close to 50%. This assessment was done at
monthly timescale and considering total rainfall, convective rainfall fraction,
and stratiform rainfall fraction separately. Changes in the mean annual
rainfall values between these two periods were assessed, and statistical
significance was checked using a Welsch t test. Next, rainfall temporal trends

were assessed using a modified version of the M-K trend test (70). This
modified version of the M-K trend test reduces the chances of false positives
by accounting for serial correlation, often present in time series data due to
subsequent observations. The magnitude of the trends was assessed using
Sen’s slope (71), which is less vulnerable to errors in comparison with least
squares estimator of a regression coefficient β, as well as less sensitive to
nonnormality of the parent distribution and outliers.

Changes in EVI, LST, LE, and ET associated with forest loss were assessed
using an SFT substitution approach (30, 31). The basic assumption in the SFT is
that spatial and temporal variations are equivalent (30). Hence, observations
of LST, LE, and ET over deforested areas were compared with those obtained
over adjacent forests (i.e., intact forests located inside the same 1° × 1° cell).
Deforested areas were identified using the land cover maps. Only areas that
were deforested during the entire period of the MODIS time series used in
this study (2001 to 2018) were used in the analysis. Given the coarser spatial
resolution of MODIS data (500 m for LE and ET, ∼5 km for LST) in comparison
with the land cover data (30 m), the influence of pixel mixing on LST, LE, and
ET retrievals was minimized by eliminating MODIS pixels with more than
10% forest cover. Our analysis did not require resampling or pixel aggre-
gation to resize the climate data (i.e., rainfall, LST, ET, and LE). Each climatic
variable was analyzed independently and therefore, using the original
resolution.

The SFT substitution is broadly used to infer temporal changes in ecological
and biophysical systems using contemporary spatial patterns (24, 30, 31, 72).
This approach is considered an alternative to long-term assessments, par-
ticularly in situations when long time series observations are not available.
This is the case of our study, given that the MODIS time series used in our
analysis is available starting from the year 2001.

Data Availability. Remotely sensed measurements of LST, rainfall, LE, and EVI
are stored at NASA’s Level-1 and Atmosphere Archive and Distribution
System (LAADS) Distributed Active Archive Center (DAAC) (https://ladsweb.
modaps.eosdis.nasa.gov/). Land cover maps were obtained from Project
MapBiomas - Collection 4 of Brazilian Land Cover & Use Map Series, through
the link https://mapbiomas.org/.
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